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We examine the sources of error in the histogram reweighting method for
Monte Carlo data analysis. We demonstrate that, in addition to the standard
statistical error which has been studied elsewhere, there are two other sources
of error, one arising through correlations in the reweighted samples, and one
arising from the finite range of energies sampled by a simulation of finite length.
We demonstrate that while the former correction is usually negligible by com-
parison with statistical fluctuations, the latter may not be, and give criteria for
judging the range of validity of histogram extrapolations based on the size of
this latter correction.
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I. INTRODUCTION

Monte Carlo simulations have a long and interesting history. As a tool for
studying physical systems (rather than for performing integrals), they date
back at least as far as the pioneering work on neutron diffusion by Enrico
Fermi in the 1930s, (1) but Monte Carlo methods really came to prominence
in the fifties following the calculations on hard-sphere gases and other simple
systems performed by Ulam, Metropolis, von Neumann and others using
the early digital computers at Aberdeen and Los Alamos.(2) In the last
three decades, with the availability of ever-increasing amounts of computer
power, the Monte Carlo method has become one of the most important
tools in the statistical physicist's tool-box.(3)

Although the name Monte Carlo covers a multitude of different ideas
and techniques, we concentrate in this paper on the simulation of classical

1011

0022-4715�99�1200-1011�16.00�0 � 1999 Plenum Publishing Corporation

1 Santa Fe Institute, Santa Fe, New Mexico 87501.
2 Department of Physics, Duke University, Durham, North Carolina 27708.



models in thermal equilibrium. All equilibrium Monte Carlo calculations
revolve around the same fundamental idea. One generates a number of
states i=1 } } } n of the system of interest and measures for each one the
total energy Ei and any other quantities of interest Xi , Yi , etc. Normally all
states i are not generated with equal likelihood, but with varying
probabilities pi , a technique known as importance sampling. The best
estimate of the thermal average (X ) of a quantity X is then given by

(X )=
� i Xi p&1

i e&;Ei

� i p&1
i e&;Ei

(1)

where ;=(kT )&1 is the inverse temperature and k is the Boltzmann
constant.(4)

The most common choice by far for the probabilities pi is to make
them proportional to the Boltzmann weight of the corresponding state at
the temperature of interest

pi B e&;Ei (2)

in which case Eq. (1) reduces to a simple average over the measurements Xi .
Many other choices have been investigated however, including simple or
uniform sampling(5) in which p i is a constant independent of i, entropic
sampling(6) in which pi is proportional to the reciprocal of the density of
states at energy Ei , and 1�k sampling(7) in which pi is proportional to the
reciprocal of the integrated density of states. In the present paper we
investigate the case in which the states are sampled with probabilities
proportion to their Boltzmann weights, but at a temperature T0 different
from the temperature at which we wish to calculate (X ). In other words,
we imagine performing a normal thermal Monte Carlo simulation at a
temperature T0 , and then ask for the best estimate of the expectation of X
at a different temperature T. Making the replacement ; � ;0 in Eq. (2) and
substituting into (1), we obtain

(X )=
� i Xie

&(;&;0) Ei

� i e&(;&;0) Ei
(3)

This is not a new result. Already in 1972, Valleau and Card(8) pointed out
that it is possible in theory to extract a value for (X ) at any temperature
from the results of a single thermal Monte Carlo simulation using an equa-
tion of this type. Their results were rediscovered and extended in 1988 by
Ferrenberg and Swendsen, (9) who dubbed this technique the ``single
histogram method.'' The name is something of a misnomer, since the
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method's application does not necessarily involve the construction of any
histograms. Ferrenberg and Swendsen's formulation however was in terms
of histograms and, as we will see, it is often convenient to represent the
method in this way.

Defining the double histogram H(E, X ) to be the number of states i
sampled for which Ei=E and Xi=X, we can rewrite Eq. (3) in terms of
sums over the possible values of E and X thus:

(X )=
�E, X XH(E, X ) e&(;&;0) E

�E, X H(E, X ) e&(;&;0) E (4)

If we define a set of weights

W(E, X )=H(E, X ) e&(;&;0) E (5)

then Eq. (4) can be rewritten as a weighted average over X:

(X )=
�E, X XW(E, X )
�E, X W(E, X )

(6)

Note that W(E, X ) and H(E, X ) become equal when ;=;0 . In effect,
W(E, X ) is an estimate of the value of the histogram H(E, X ) at the tem-
perature of interest.

It is possible to write an equation similar to (3) for parameters other
than the temperature, allowing us to extrapolate the results of a single
simulation to other values of any external field appearing in the
Hamiltonian. It is also straightforward to generalize the histogram method
to non-Boltzmann sampling schemes. Here however we concentrate on the
simple case described above.

In this paper we explore the sources of error in histogram extrapola-
tions. The statistical errors inherent in the method have beep discussed at
some length elsewhere, (10) and it is not our intention to reproduce previous
results here. We focus instead on two important sources of error which
have been neglected in previous studies. In Section II we discuss errors
introduced as a result of the finite range of energies sampled in a simula-
tion of finite length, and show that in certain temperature regimes this, and
not statistical fluctuation, is the dominant source of error. In Section III we
discuss errors introduced by the correlation between fluctuations in the
numerator and denominator of Eq. (3). In Section IV we discuss correc-
tions to the normal expression for the statistical errors arising from the
previous analysis and show that to leading order these corrections are
negligible. In Section V we give our conclusions.
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II. FINITE-SAMPLE-SIZE ERRORS

Suppose that we perform a single Monte Carlo simulation at tem-
perature T0 on some system-of interest, and that this simulation samples n
states of the system at intervals of {s Monte Carlo steps. We assume in this
paper that {s is much greater than the correlation time { of the simulation
algorithm used (also measured in Monte Carlo steps) so that the states
may be considered to be statistically independent. More generally, if {s and
{ are comparable, then the variance in a measured quantity is increased by
a factor of 1+2{�{s over its value for uncorrelated samples.(11) All the
results given in this paper can be generalized to this case in a straight-
forward manner; see ref. 10 for a thorough exploration of this issue.

In the limit of an infinite number of independent samples, n � �,
Eq. (3) is exact and correctly gives the value of (X ) at all temperatures.
In practice, however, n is always finite, and this limits the range over which
the extrapolation is valid. In Fig. 1 we show an example of the use of the
single histogram method to calculate the internal energy of a two-dimensional

Fig. 1. The weight function W(E ) for a 32_32 Ising ferromagnet on a square lattice in two
dimensions, calculated at four different temperatures from a single simulation at the critical
temperature Tc=2.269 of the infinite system. The curves shown are (left to right) for T=Tc ,
2.3, 2.4, and 2.6.
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Ising model in zero field. The case of the internal energy is particularly
simple, since the weight function W(E, X ) reduces in this case to a function
W(E ) of a single variable E, the energy of the states sampled in the simula-
tion. The figure shows the calculated value of this function for a variety of
different temperatures at distances increasingly far from the temperature T0

of the original simulation. For small deviations from T0 the calculated
value of W(E ) is a good approximation to the histogram H(E ) which
would be generated by a simulation performed at temperature T. However
as T strays farther from T0 , the value of W(E ) becomes an increasingly
poor representation of the correct histogram, as can be seen in the figure.
The source of this problem is clear: a finite-n Monte Carlo simulation
samples energies in only a rather narrow range around the value U(T0) of
the equilibrium internal energy of the system at T0 . Extrapolation of the
results to temperatures T for which the true histogram H(E ) would possess
significant contributions at energies outside this range is therefore guaranteed
to give poor results. In the particular case of the internal energy, it is clear
that if the highest energy sampled by our simulation is E+ , then no
reweighting of our histogram can ever produce an estimate of U(T )#(E)
greater than E+ , regardless of the true value.

The usual rule of thumb for estimating the range of validity of the
extrapolation is to require that the mean of the reweighted distribution
W(E ), which is just the internal energy U(T ), should be less than _E away
from the mean U(T0) of the histogram H(E ), where _E is the standard
deviation of H(E ). Since _E is related to the specific heat C at T0 according
to C(T0)=k;2

0 _2
E , we can also express this condition in terms of C(T0) as

[U(T )&U(T0)]2<kT 2
0C(T0) (7)

This inequality can be simplified further if we make the derivative
approximation

U(T )&U(T0)& (T&T0)
dU
dT }T0

=2T C(T0) (8)

where 2T#T&T0 is the temperature range over which we are extrapolating.
Employing this approximation, our condition becomes

_2T
T0 &

2

<
k

C(T0)
(9)

This condition is intuitively easy to understand and in most cases is a
reasonable guide for applying the histogram method. However, as we will
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demonstrate, the actual range of validity of the method can deviate
arbitrarily far from the value of 2T given by Eq. (9), depending on the
number n of samples generated by the Monte Carlo simulation.

We now construct a more accurate criterion for the extrapolation
range. The basic idea is to make an estimate of the energy E+ above which
there are no samples, and then to approximate the error introduced into
our extrapolation by assuming that the histogram is accurate up to E+ ,
and contains no samples thereafter. We do the same for the lower limit E&

of the histogram. A variation on this idea would be to restrict the
extrapolation to a range of energies such that some prescribed fraction of
the samples in the histogram fall within that range. However, since the tails
of the histogram typically decay exponentially or faster, these two
approaches give approximately the same results.

Consider the ideal histogram H(E ), which we define to be the value of
the histogram H(E ) averaged, bin by bin, over an infinite number of
simulations which generate n samples each. We then approximate the
histogram resulting from a single simulation by

H(E)={(n�n$) H(E )
0

if E&<E<E+

otherwise

The factor n�n$, where n$=�E+
E&

H(E ) dE, is a normalizing factor which
ensures that the integral of H(E ) over E is correctly equal to n. The values
of E+ and E& are given by

H(E\)=a (11)

where a is a constant of order unity.
Making this approximation, the error in the extrapolated internal

energy can be written as

2U=U(T )&U(T )=
� Ee(;&;0) E H(E ) dE
� e(;&;0) E H(E ) dE

&
� Ee(;&;0) EH(E ) dE
� e(;&;0) EH(E ) dE

=
�

�;
log

�E+
E&

e&(;&;0) E H(E ) dE

��
&� e&(;&;0) E H(E ) dE

(12)

1016 Newman and Palmer



In order to proceed we make a Gaussian approximation for H(E ):

H(E )=
n

- 2?_2
E

exp \&
[E&U(T0)]2

2_2
E + (13)

This assumption is an excellent guide for the behavior of most systems at
temperatures well above T=0. For instance, in the Ising system of Fig. 1
it gives log H(E ) within a few percent over more than a hundred orders of
magnitude of H(E ).

Using Eq. (13) and another derivative approximation:

(;&;0) _2
E=&(;&;0)

dU
d; };0

&U(T0)&U(T ) (14)

we complete the square to obtain

H(E ) e&(;&;0) E&
n

- 2?_2
E

f (;) exp \&
[E&U(T )]2

2_2
E + (15)

where

f (;)=exp \U 2(T )&U 2(T0)
2_2

E + (16)

is a shorthand for all the terms in the exponential which depend on ; but
not on E. Substituting Eq. (15) into (12) and performing the integral leads
to

2U=
�

�;
log _1

2
erf \E&U(T )

- 2 _E
+&

E+

E&

=�2_2
E

?
exp(&x2

+)&exp(&x2
&)

erf (x+)&erf (x&)
(17)

where erf (x)=(2�- ?) �x
0 e&t2

dt is the Gaussian error function, and

x\#
E\&U(T )

- 2 _E

=\�log
n

- 2? _E a
&

_E 2T

- 2 kT 2
0

(18)

using Eqs. (8), (11) and (13).
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Between them, Eqs. (17) and (18) give us an estimate of the deviation
of the extrapolation of U from its true value as a function of the number
of samples n and the temperature range 2T over which we extrapolate.

As a test of this calculation we have plotted in Fig. 2 the value of 2U
measured in simulations of a 100_100 Ising model on a square lattice in
two dimensions. The data points with error bars show the difference
between the true internal energy (obtained from further independent
simulations) and those calculated via Eq. (3) from simulations with n=100
samples at temperature T0=2.269 (the critical temperature of the infinite
system). These points are averaged over 1000 repetitions of the simulation
at Tc . The solid line is from Eqs. (17) and (18) with the constant a chosen
so as to best fit the data. As the figure shows, the agreement between the
two is good.

In a typical Monte Curio calculation we want to know the range of
temperature 2T over which we can extrapolate from a single histogram to
a given degree of accuracy 2U as a function of the sample size n. In the

Fig. 2. The difference 2U between the true internal energy of a 100_100 Ising ferromagnet
and an extrapolation using Eq. (3) of the same quantity from simulations with n=100 sam-
ples performed at a single temperature T0=2.269. The line is a fit using Eqs. (17) and (18).
Energies are in units of the coupling constant J, and may be compared to U(T0)=&1.4_104.
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regime where U(T ) approaches either of the limits E& or E+ , one or other
of the terms on the top and bottom of Eq. (17) becomes a constant (either
zero or one) and the variation in 2U resides entirely in the remaining
terms. In this case a line of constant 2U is also a line of constant x+ or
x& (for 2T positive or negative respectively) which means that

\ �log
n

- 2? _E a
&

_E 2T

- 2 kT 2
0

=b (19)

with the value of the constant b depending on the size of error 2U we are
willing to live with. Thus, for given 2U, the temperature range 2T over
which the extrapolation is valid increases at most logarithmically with
increasing sample size n.

In Fig. 3 we demonstrate this formula for the 100_100 two-dimensional
Ising model. The inset shows extrapolations from the critical temperature

Fig. 3. Inset: the difference between the true and extrapolated internal energies of a
100_100 Ising ferromagnet for a variety of different sample sizes n. Main figure: the range 2T
over which the extrapolation is accurate to \100, as a function of n. The points are the values
from the simulations shown in the inset and the two solid lines are Eq. (19), taking the + and
& signs separately. The upper curve and points are for positive 2T, the lower ones for
negative 2T.
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of the infinite system for sample sizes n=10, 20, 50, 100, 200, 500, and
1000, using Eq. (3). The errors in these results are comparable to the
widths of the lines. The dashed lines show an arbitrarily-chosen deviation
of 2U=\100 from the true value as our limit of acceptable accuracy��
a relative error of about 0.70. The intersections of the solid curves and
dashed lines give the ranges 2T over which simulations with different n
give acceptable results. The main figure shows these ranges as points with
error bars, the upper points corresponding to values 2T>0 (i.e., extrapola-
tion above T0), the lower ones to 2T<0. The solid lines are Eq. (19) with
the constants a and b chosen by a least squares fit to the data. As the figure
shows, simulation and theory are in good agreement.

As an example of the use of Eq. (19), consider the results of Mu� nger
and Novotny(12) who performed an extensive numerical study of the
accuracy of the single histogram extrapolation method for the case of the
q=3 Potts ferromagnet in two dimensions. They concluded that the
specific heat predicted by the method shows systematic deviations from the
true specific heat, and presented evidence indicating that the size of these
deviations decrease with increasing n. As we now show, our Eqs. (9) and
(19) are completely in agreement with this finding.

Mu� nger and Novotny performed simulations on 8_8 square systems
with n=50 and n=500, at three temperatures 0.8Tc , Tc , and 1.3Tc , where
Tc=0.9950 is the critical temperature of the infinite system. They
attempted to calculate the position of the maximum of the specific heat of
the system by histogram extrapolation. The maximum in a system of this
size occurs at about 1.04Tc . Column 3 of Table I shows the values of 2T
calculated using the simple rule of thumb, Eq. (9). As the values show,
whilst the required extrapolation range for the simulation at Tc is comfor-
tably within that allowed by the criterion, the ranges for the other two
simulations are not nearly enough to reach the temperature of the specific
heat peak. (Column 2 of the same table shows the value of 2T required to
reach the peak.) So, it should not come as a surprise that extrapolations

Table I. Values of the Extrapolation range 2T from
Eqs. (9) and (19) for the Simulations Performed

by Mu� nger and Novotny(12)

Temperature Required 2T Simple estimate n=50 n=500

0.8 0.24 0.13 &0.23 0.35
1.0 0.04 0.08 &0.29 0.07
1.3 0.26 0.19 &0.57 0.33
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using the results of these two simulations give very poor estimates of the
position of the peak. As we have argued however, if n is large, Eq. (9)
underestimates 2T, and so it may be possible that for the particular values
of n used in these simulations the extrapolation will work. We now show,
as Mu� nger and Novotny also found, that this is not the case. Even making
the most generous estimate possible of 2T, the temperature range of the
extrapolation is just too large to allow us to calculate the position of the
peak accurately using the histogram method.

Let us then apply Eq. (19) to the calculations of ref. 12. Before we can
do this, we have to choose values for the constants a and b. The most
generous choice we can make for b is to set b=0, which implies that the
histogram extrapolation is accurate all the way out to E\ . Experience
suggests that this is probably over-generous by about a factor of 2 in 2T,
but let us go with this value for the moment and see where it leads. With
this value of b, Eq. (19) can be rewritten in the form

_2T
T0 &

2

<
k

C(T0)
log

n2

2?_2
E a2 (20)

Comparing with Eq. (9), we see that the net result is to multiply our simple
rule-of-thumb estimate of 2T by a factor depending logarithmically on n.
Mu� nger and Novotny noted in their paper that the convergence of the
specific heat peak to its correct position with increasing n appeared to be
very slow, and this equation indicates that the convergence is in fact
logarithmic.

The value of a is harder to judge. In Eq. (11) we defined a to be the
number of samples in a bin which just suffices to make an estimate of the
value of the weight function W(E ) at that energy. Clearly this number
should be greater than one, but probably not much greater. We have
chosen a value of a=10 for our calculations, which, if we assume Poisson
fluctuations in the number of samples per bin, implies we know W(E ) to
within about 300. As with our choice of value for b, this is quite a
generous estimate. Better accuracy is probably desirable for most real
Monte Carlo calculations.

The fourth and fifth columns of Table I give the values of 2T
calculated from Eq. (20) for the two values of n used in the simulations.
The values for n=50 are in all cases negative. This is an indication that the
Gaussian approximation we have used in the calculation has broken down
because there is less than one sample per bin on average at energy U(T )
for the temperature T which we want to extrapolate to. One should
definitely not expect these calculations to give a good estimate of the posi-
tion of the specific heat peak. In the case where n=500, the values are
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larger and in fact just sufficient to encompass the desired temperature
range. However, given that we have here made the most generous possible
estimate of 2T��the true values are probably a factor of 2 or more
smaller��it would not be prudent to use these calculations to find the
specific heat peak either. It should come as no surprise therefore that
Mu� nger and Novotny found that the histogram method gave a poor
estimate of the position of the peak in this case. The values in Table I are
a strong indication that larger values of n are needed to give reliable
results.

Mu� nger and Novotny deliberately performed simulations with small
values of n in order to investigate the inaccuracies of the histogram
method. However, in normal use, the method is applied to simulations with
large n, and in the region close to T0 where the deviation 2U is small. We
can characterize this regime as one in which |x\|>>1, in which case the
value of the denominator in Eq. (17) is close to 2 and the primary variation
in 2U comes from the Gaussians in the numerator:

2U&�_2
E

2?
[exp(&x2

+)&exp(&x2
&)] (21)

Since E+ and E& are symmetrically distributed about U(T0), we have
x+(T0)=&x&(T0), and the two terms cancel to give 2U=0 at T=T0 , as
expected. The leading term in the expansion of 2U about this point is
linear in 2T with coefficient

�2U
�T }T0

=
2a;2

0 _3
E

n �log
n2

2?_2
E a2 (22)

Thus 2U tends to zero roughly as 1�n to leading order, and the higher
order terms vanish faster than this. As we will see in Section IV, the statisti-
cal errors in extrapolated quantities fall off in the normal 1�- n fashion, so
that in the region close to T0 , finite sample size errors always become negli-
gible for sufficiently large n.

On the other hand, when we get far away from T0 , the extrapolated
value of U becomes roughly equal to E+ or E& (depending on the direc-
tion in which we extrapolate) and hence approximately independent of n,
since E\ only varies slowly with n. Thus the error 2U is approximately
n-independent in this regime and dominates over statistical errors for
sufficiently large n. The point of crossover between the two regimes is given
by Eq. (19).

A similar argument can be made for the extrapolation of quantities
other than the energy. The limiting extrapolated values of any quantity Y

1022 Newman and Palmer



are set by the values Y\ corresponding to the highest and lowest energies
sampled in the simulation, and since these energies are approximately
n-independent, so normally will Y\ be. Thus Eq. (19) tells us for any quan-
tity Y the point of crossover at which errors due to the finite number of
samples in the histogram become the dominant source of inaccuracy in the
histogram method.

III. DISTRIBUTION ERRORS

There is another source of systematic error in the estimates given by
the single histogram method which has not, to our knowledge, been
remarked upon before. Even ignoring the corrections discussed in the last
section, which were due to the imperfect sampling of the histogram H(E ),
Eq. (3) is not in fact a correct expression for the best estimate of (X ) for
any finite n. To understand this, consider again the hypothetical situation
in which we perform a large number N of simulations of the system of
interest, each one generating n statistically independent samples drawn
from the Boltzmann distribution at T0 . For each one we calculate an
estimate

(X ) i=
� j Xij e&(;&;0) Eij

� j e&(;&;0) Eij
=

Pi

Qi
(23)

where i=1 } } } N labels the different simulations and Xij is the value of X in
the j th state sampled by the ith simulation. The new quantities P and Q
will provide a convenient shorthand for the numerator and denominator of
this equation.

Now we want to compute the best estimate of (X ) over all N simula-
tions. Since the samples in each simulation were drawn from the same
distribution, we can just as well regard them all as being one large set of
samples of size nN drawn from a single simulation, in which case it is clear
that in the limit of large N the correct answer for (X ) is

(X )=
� ij Xij e&(;&;0) Eij

� ij e&(;&;0) Eij
=

P�
Q�

(24)

where P� and Q� indicate the averages of Pi and Qi over all N simulations.
(We use the barred notation to avoid confusion with the notation (X ) for
thermal expectation values.) This equation indicates that the best estimate
of (X ) is calculated by separately averaging the numerator and
denominator of Eq. (23) over our many simulations. In practice, one does

1023Error Estimation in Histogram MC Method



not perform many simulations, one performs only one simulation with
finite n and then calculates the ratio P�Q for that one simulation. The mean
value of this ratio however is not the same as the ratio of the means,
Eq. (24), which gives the correct answer. This difference leads to a
systematic error in the predictions of the single histogram method for finite
sample sizes. In this section we calculate the size of this error.

Consider the double Taylor expansion of the quantity P�Q around
P� �Q� :

P
Q

=
P�
Q�

+(P&P� )
1

Q�
&(Q&Q� )

P�
Q� 2

+(Q&Q� )2 P�
Q� 3

&(P&P� )(Q&Q� )
1

Q� 2
+ } } } (25)

Taking the average of both sides over many repetitions of the simulation,
the linear terms vanish and to leading order we are left with

P�Q =
P�
Q� _1+

_2
Q

Q� 2
&

cov(P, Q)

P� Q� & (26)

where _2
Q is the variance of Q over simulations i and cov(P, Q) is the

covariance of P and Q. Thus the mean value of the quantity P�Q, which
is the quantity measured in our Monte Carlo calculations, differs from the
true value of (X ) =P� �Q� by the factor enclosed in the square brackets
[ } } } ]. One should take this factor into account in order to calculate the
extrapolation of a quantity correctly.

Given that in a typical situation we only perform one simulation of
our system, what is the best estimate we can make of this factor from our
Monte Carlo results? Clearly the best estimates of P� and Q� are simply the
values of P and Q measured in the simulation: P� =P, Q� =Q. The best
estimates of the variance and covariance terms are

_2
Q=

1
n&1 {:

j

e&2(;&;0) Ej&_:
j

e&(;&;0) Ej&
2

= (27)

and

cov(P, Q)=
1

n&1 {:
j

Xj e&2(;&;0) Ej&:
j

X j e&(;&;0) Ej :
j

e&(;&;0) Ej=
(28)
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Substituting these into Eq. (26) we see that the correction term scales as
1�n with sample size. But, as shown below, statistical errors scale as 1�- n
and therefore dominate for large n. Thus it should be safe to ignore errors
of the type described by Eq. (26) for simulations of sufficient length.

IV. STATISTICAL ERRORS

The third and final source of error which we consider is statistical fluc-
tuation in the extrapolation due to the essential random nature of a Monte
Carlo simulation. We can calculate the variance _2

P�Q of the quantity P�Q
by a technique similar to that used to derive Eq. (26); we perform a Taylor
expansion of P2�Q2 about P� �Q� and take the average over many simula-
tions. Then we calculate the variance as _2

P�Q =P2�Q2&P�Q 2. The vari-
ance _2

X of the best estimate of (X ) is then _2
P�Q times the square of the

correction factor in Eq. (26). To leading order this gives

_2
X

(X ) 2=
_2

P

P� 2
+

_2
Q

Q� 2
&2

cov(P, Q)

P� Q�
(29)

This expression is identical to that given by Ferrenberg et al., (10) for the
error on the uncorrected estimate P�Q .

Using Eqs. (27) and (28), along with the obvious extension

_2
P=

1
n&1 {:

j

X 2
j e&2(;&;0) Ej&_:

j

Xj e&(;&;0) Ej&
2

= (30)

it is clear that _2
X scales as 1�n, and hence that _X scales as 1�- n, as

claimed earlier. This is a slower scaling than the 1�n of the previous section,
but still much better than the approximately constant value of the finite
sample size error of Section II for large extrapolation range 2T. This
means that we must use an equation such as (19) to decide which of these
two latter sources of error is the dominant one under given circumstances.

V. CONCLUSIONS

In this paper we have examined in detail the sources of error in the
Monte Carlo extrapolation method known as the single histogram method.
We have discussed three sources of error: finite sample size errors,
systematic errors due to the approximations made in the calculation of the
extrapolation, and finally statistical errors. The first two of these have not
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to our knowledge been discussed previously, and in particular we find that
the finite sample size errors are, under commonly encountered conditions,
significantly larger than either of the other sources of error.
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